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Exactly solvable model with an absorbing state and multiplicative colored Gaussian noise
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We study the temporal evolution of a system that has an absorbing state and that is driven by colored
Gaussian noise, whose amplitude depends on the systenxstat®|“. Exact, analytical expressions for the
probability density functions of the system and of the absorption time are derived. We also calculate numerical
characteristics of the probability density functions, namely, the fractional moments of the system and the mean
absorption time, and analyze the role of the functional form of the noise correlation function.
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. INTRODUCTION X(t): _ KX(t)+ |X(t)|af(t), (12)

Many systems and models in physics, chemistry, biologyand has the advantage of being exactly solvable. The state
and other fields possess absorbing states. Such states canxe0 can be an absorbing state for this system only if
reached by the dynamics of the system, but once the system0. Fora=1, this state cannot be reached in a finite amount
attains an absorbing state, the dynamics does not allow it tef time, and we restrict our consideration therefore to the
escape and the system is trapped in that state. Systems wilfterval 0<a<1. Most commonly encountered in applica-
absorbing states have attracted particular attention over thfyns is the valuew=1/2. Multiplicative noise of this type
last decade, since they can display nonequilibrium phasgccurs in models of lasefd 5], and in models of chemical
transitions between active and inactive phases3]. Well-  reactions and epidemidd6—19. The latter belong to the
studied examples include the spreading of epiderfcS],  unijversality class that can be represented by the Langevin
reaction-diffusion models of surface catalyifs7], transport  equation of Reggeon field theory. The spatially homogeneous
in random medid8,9], forest fireq10], surface growtti11],  version of that equation coincides with Eg.2) for smallx.
and contact processes with agifig]. In addition to considering the Langevin equatidn?) as a

The simplest nonequilibrium situations are models or sysmodel in its own right, it can also be thought of as an ap-
tems without spatial structure. Examples are well-stirred auproximation that retains only the lowest order term of the
tocatalytic chemical reactions, such as the Sghimodel  systematic forcé (x) and the multiplicative noise terg(x)
[13], lumped models in population biology, such as the 0-in an expansion around the absorbing state. For this reason,
gistic or Verhulst modef14], or an overdamped particle in @ we consider not only the case>0, where the systematic
potential subjected to a random driving fol&d. Such sys-  force in the absence of noise drives the system toward the
tems can display absorbing states, and their dynamics can R@sorbing state, i.ex=0 is deterministically linearly stable,

described by a Langevin equation, but also the case<0, which corresponds to a deterministi-
_ cally linearly unstable steady statexat 0.
X(t)=F(x(t))+gx(t))f(t), (1.2 As discussed in a previous page0], Eq. (1.2 has the

interesting feature that for Qo<1 the solution is not

whereF(x) andg(x) are deterministic functions, arft) is ~ Unique atx=0. There are two solutions that pass through
a stationary Gaussian noise with zero mean and arbitrar§ero, one for whickx=0 is a regular point and one for which
correlation function R(u) [R(0)>0, R()=0]. Equation X=0 is an absorbing state. In Ref20], we studied the

(1.1) possesses an absorbing stateif that state can be former .type of _solution, which coincides with that of the
reached dynamically and if both the systematic force and th&angevm equation
random driving force vanish in that state, i.e Fifx)=0 and [X(t)+ kXD x| *=f(1) (1.3
g(x)=0. Clearly, only systems with multiplicative noise,
i.e., g(x)sconst, can display absorbing states that are affor all timest=0. Specifically, we found the univariate and
intrinsic property of the dynamics. bivariate probability density function$DF9, the fractional
We study the statistical properties of a nonlinear systenmoments, the correlation function, and the fractal dimension
that belongs to the class defined by Efd). It is described of the solution. As mentioned above, in this paper we study
by the Langevin equation the statistical properties of the systéin?2) with an absorb-
ing state atx=0. In that case, for the initial conditiox(0)
=X>0, the solution of Eq(1.2) coincides with the solution
*Electronic address: denisov@ssu.sumy.ua of Eq. (1.3 only for O<t<t,. For t>t,, the system(1.2)
"Electronic address: whorsthe@mail.smu.edu remains trapped in the state=0, i.e.,x(t)=0, whereas sys-
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tem (1.3) has a nonzero solutidr20]. Heretge (0,0] is the
absorption time. It is the instant whet{t)=0 for the first

time, or, in other wordg, is the so-called first-passage time.

At the random instant of timé=t,, the system(1.2) be-

comes trapped in the dynamically completely inactive state

x=0.
We use the results of R€i20] to derive exact, analytical
expressions for the PDF of the systdn?2) with x=0 an

absorbing state, as well as the absorption time probability

density. We find thak=0 is the critical value. Fok posi-
tive, absorption is certain, while fot negative, the system

remains in the active state with nonzero probability even a

time goes to infinity. At the critical value of, either various

types of diffusive behavior or stochastic localization occur,
depending on the correlation function of the noise. Only in
the former case is absorption the ultimate fate of the system.

Survival is possible in the latter case.

The paper is organized as follows. In Sec. Il we find the

PDF for the solution of Eq(1.2). We derive the exact ex-
pressions for the fractional moments xft) and calculate

their asymptotic behavior in Sec. Ill. In Sec. IV we find the
PDF for the absorption time. We calculate the mean absorp- 9
tion time in Sec. V. We also determine its behavior as the
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If f(t) is a Gaussian noise, theai(t) is also a Gaussian
process, and Eq2.4) is reduced to the power-normal distri-

bution[20]
PL(x,1) = exp{— . (L
V2mag(t)|x|* 2075(t) | x|

(2.5

2
_ X(]).—ae—wt> ]

[xe(—=,%)]. Here of(t)=(g*(t)) is the dispersion of

g(t)[() denotes averaging with respect to the noi¢g],

which is given by

—wt

Jtdu R(u)sini w(t—u)].
0
(2.6)

os(t)=2(1-a)?

w

One can verify thatP,(x,t) satisfies the Fokker-Planck
equation

—P,(x t)=i[KX—A () ax|x| 2@ DIP(x,1)
a IX ® xam

initial state of the system approaches either the absorbing
state or the noise intensity goes to infinity as well as the limit 2

of the initial state going to infinity or the intensity of the

noise going to zero. We discuss extensions of our results in

Sec. VI.

II. PROBABILITY DENSITY FUNCTION
A. PDF for Eq. (1.3

For the convenience of the reader, we briefly summarize

the main results of Ref20]. To find the PDFP(x,t) for the
solution of Eq.(1.2) with x=0 an absorbing state, we obtain
first the equation for the PDP,(x,t) of the solution of Eq.
(1.3). According to Ref[20], the solution of the latter equa-
tion has the form

x(t)=[xg “e”“"+q(t)]|xg “e”+q(t)| ",

(2.2)
wherew=(1-a)«, and
t 7
q(t)=(1—a)f dt’e Mt f(t"). (2.2
0
Since
q(t)=x(t)|x(t)| " *—x5~ *e”“, (2.3

a one-to-one correspondence exists betwéenandq(t). If
Pq(q,t) is the probability density thatq(t)=q, then
Px(x,t)dx=P4(q,t)dq and we obtain

a X 1-a,— ot
=Py - —xb e t]. (24

1%
+A,(0) 5 X[2Py(x1), 2.7
oX

where

oot og(H) + wad(t)
(1-a)?

t
A, (D)= fodu Ru)e “Y=
(2.9

Specifically, if f(t) is Gaussian white noise, theR(u)
=2A4(u) (A is the white noise intensify and Eg.(2.8
yields A ,(t)=A. The solutionx(t) is a Markovian diffusion
process, and Ed2.7) corresponds to the Stratonovich inter-
pretation[21] of Eq. (1.2). To avoid any misunderstandings,
we emphasize that for colored Gaussian ndi&@ the ran-
dom proces(t) is not Markovian, in spite of the fact that
P,(x,t) obeys the Fokker-Planck equati@h7).

B. PDF for Eq. (1.2

Recall that the solution of Eq.l.2) with an absorbing
state atx=0 coincides with the solution of Eq1.3) up to
the random absorption tintg. Therefore, the PDIP(x,t) of
Eq. (1.2 can be obtained in the following way. Let
W(x,t)(0=<x=<wx) be the solution of Eq(2.7) that satisfies
the absorbing boundary conditio®W(0,t)=0. As for Mar-
kovian diffusion processg22-24, the PDFP(x,t) is then
given by

P(x,t) =W(x,t)+A(t) 5(x), (2.9

where

A(t)=1—foxdx\l\l(x,t) (2.10
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is the probability that at timé the system described by Eqg. Xcl)_a (1-8)(2—B)
(1.2) is in the absorbing state=0. Using the method of a(t)~ (t—0),
images(see, for example, Ref25]) we can expressv(x,t) 1=a 2Cq th A
in terms of P,(x,t), (219
i.e., the parametea(t) diverges as— 0. Taking into account
WI(X,1) = Py(X,t) = Py (= X,1), (21D that erfck) ~exp(—x?)/(ymx) asx—c, we obtain from Eq.

(2.12 for t—0 the asymptotic formula

\/5 1 L{ a’(t)
A(t)~ ;mex 7

wherea(t) is given by Eq.(2.15. As expectedA(t)—0 as
Here erfcg) = (2/\/m)[;dtexp(~t?) is the complementary t—0 in agreement with the initial conditiox(0)=xy#0.
error function, anda(t)=xg~ “e” “Ya(t). If k>0 (w>0), then
It is easily verified from Eq(2.11) that W(x,t) indeed
fulfills the absorbing boundary conditio#(0,t) =0, but the
asymptotic behavior oiV(x,t) asx—0 can be singular. For
t>0, Egs.(2.5 and(2.1)) lead to the asymptotic formula

and from Egs(2.5) and(2.10 we find

: (2.18
A(t)=erfda(t)//2]. (2.12

ag(oo)z(l—a)%fwdu Ruwe “ (217
0

[sinceR(u)—0 asu—, the conditiono,(*)< holdg],
yl-ap— ot

2 (1—a)a(t) anda(t)~x; “e “/o4(*) and

— e

. —a2(t)/2y1-2a
W(X,t) F—eS X (2.13 5 xé’“
q 1-AM~\ e, (2.18

g-q(oc)

(x—0). This implies thatW(x,t)—0 for 0<a<1/2, and
W(x,t)—o for 1/2<a<1. Note that the singularity of
W(x,t) for 1/2<a<1 is an integrable one.

ast—o, So the probability of finding the system in the ab-
sorbing statex=0 tends to 1 ift—«, as expected.
For k<0 (w<0) andt—«, Eq. (2.6) yields

eZ\w|t
o)~ (1-a)
The absorption probabilityA(t), the probability that at |o]
timet the system is in the dynamically inactive stateO, is hich impli

an important quantity for characterizing the temporal behayVcN IMPIES
ior of the systen(1.2). We now analyze the short- and long- xi=@ 1 e —1/2

time behavior of this quantity. Sincg0)=Xx,>0, we expect a(»)= °_<_J du R(u)e-wIU) . (2.20
the absorption probability to approach zera @®es to zero. 1-allo|)o

The ultimate fate of the system is described by the long-time B
behavior ofA(t). If k>0 (w>0), i.e., the systematic force andA () = erfd a(=)/2]. As expected(=) <1. The ran-

drives the system toward the absorbing state aad is a dom driving force is not strong enough to overcome the sys-

deterministically stable state, then we expect the system tbematlc force with probability 1; the system has a nonzero

: : ._probability of surviving indefinitely in the active state.
become trapped eventually in the absorbing state as tim@ Finally, for k=0 (w—0), Eq.(2.6) is reduced to

goes to infinity. On the other hand, /<0 (w<0), i.e., the
systematic force drives the system away from zero and the t
absorbing state is deterministically unstable, then we expect oé(t)zZ(l—a)zf du R(u)(t—u). (2.21)
the opposing effects of the systematic force and the random 0
driving force to render the eventual trapping of the systen]]c
less certain.

It follows from Eq.(2.12) that the asymptotic behavior of t
A(t) ast—0 andt—x is determined by the asymptotic Ao(t)EJ' duR(u)=o(1t) (t—=), (2.22
behavior ofa(t). We consider the case, frequently encoun- 0
tered in applications, that the leading asymptotic term of thgpop,
correlation function of the colored Gaussian noiRéu)
obeys a power law, i.e.R(u)~c,u? as u—0 (c,
>0, 0=<pB<1).Then Eq.(2.6) yields

C. Short- and long-time behavior of the absorption probability

fwdu Ruye l“lv, (2,19
0

q(®) <, i.e., the phenomenon of stochastic localiza-
tion of x(t) occurs[26] (see also Sec. Il and A(«)<1.
This remarkable result shows that there is a nonzero prob-
ability that the system is in the active statetase. From a

2¢,(1—a)? physical point of view, the possibility of the system surviving
ag(t)~ 2 t>7 8 (t—0), (2.14  indefinitely is due to the fact that(t) andx(t,;) are corre-
(1=B)(2=5) lated in the case of stochastic localization even |fgr-t|
— oo [20]. Stochastic localization occurs if the noise intensity
and R=Ay() vanishes, i.e., if contributions from regions of
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positive and negative correlations in the noig¢) cancel The fact thatm,(«)=0 together withA(«)=1 implies that
each other out. It is this balance in the random driving forceP(x,=)= §(x). The stationary probability of the system is
itself that allows the system to survive in the active state withentirely concentrated on the absorbing state0.

a nonzero probability. Otherwise, i.e., if eithek®=oo or If «<O, then Egs.(2.19 and (2.20 yield o(t)
R=0 and condition(2.22 does not hold, we have(«) ~x$*“e|“’|‘/a(oo), and Eq.(3.3) leads to the asymptotic for-
= andA(x)=1. mula

Our results show that sublinear multiplicative colored
Gaussian noise does not change the critical valydor a F(f)e—az(w)m
linear restoring force. We find that far>0, A(~)=1, and m,(t)~x[)?{D_§[—a(oo)]—D_g[a(oo)]}e”"'t
for k<0, A(x)<1, i.e., kx,=0. The critical situation it- V2ma ()
self, however, splits into two cases. If the noise inten&ity 3.6

vanishes and conditiof2.22) is fulfilled, the system has a

chance of ultimate survival, whereas otherwise ultimate trap({t—~%), wherea(e) is given by Eq.(2.20. Thus, for «
ping occurs with probability 1. <0 all fractional moments diverge ds-o0; no stationary

PDF exists. Recall thad()< 1. The fact that all moments
go to infinity ast—« has the following implication. If the
IIl. FRACTIONAL MOMENTS system avoids being trapped in the state0, then there is a
In the previous section, we achieved our main goalNONZero probability thax(t) undergoes arbitrarily large ex-
namely, to obtain the PDF of the solutioft) of Eq. (1.2) ~ Cursions as—co.
with an absorbing state at=0, and the absorption probabil-  If «=0 and Eq.(2.22 holds, thenoy(=)< and all
ity. In this section, we will consider a more concise descrip-fractional momentsn, (=) are finite, i.e., stochastic localiza-
tion of the system and calculate numerical characteristics dfon of x(t) occurs. When Eq(2.22 does not hold, i.e.,
the random process(t). Moments are of particular interest “q(*) =%, Egs.(3.3 and(3.4) yield
in applications, and here we consider the fractional moments
m,(t)(r>0) of x(t), Xg * [Eé+1
m,(t)~ —F(T
Jm

(t—o0). According to this formulam,(e)=0 for 0<r<1
—a, 0<m(»)<ow for r=1—«a, and m;(x)=cw for r
Using the integral representation of the Weber parabolic cyl>1—«. So, althoughA(»)=1, all fractional moments
inder functiong27] m,() with r>1—a are infinite. The system will almost
surely be trapped in the absorbing statet-ase; however,
£ L yPxy no st:_itionary_ PDF exists. Even as time.goes to i_nfinity, the
TM)JO dy y“~ ‘e (x>0) (3.2 diffusive motion of the system results in excursions arbi-
trarily far away from the absorbing state. Specifically, the
dispersion of the system state2(t) = (x3(t)) —(x(t))?, is
given bya2(t)=m,(t)—m2(t) and it follows from Eq(3.7)
that o2(t) ~my(t) — % ast—oo. If Ag(t)ct” (—1<y<1)
re) as t—w, then o5(t)xt'"7, and therefore of(t)
m.(1)= —e‘az(‘)"‘og‘l(t){D_g[—a(t)]—D_g[a(t)]}, st )l “)..Thezlast relation shows that normal dif-
V2 fusion [diffusion with o2(t)oct ast—oo], subdiffusion(dif-
3.3 fusion slower then the normaland superdiffusioidiffusion
faster then the normplof x(t) take place, ifp=—2a/(1
whereg=1+r/(1-a). +a), —1<9<-2al(1+a), and —2a/(1+a)<y<1,
We now study the long-time behavior of, (t). If x>0, respectively.
then using the asymptotic formula

282057 %(t) 3.7

mr(t)zf:dx XP(x,1). (3.9

e—x2/4
D_,.(x)=

[T(un)=[gdyy“ te™ is the gamma functich we can re-
duce Eq.(3.1) to the form

IV. PROBABILITY DENSITY FUNCTION OF THE
£+ 1)X (x—0) ABSORPTION TIME
2 )

E12+1/2

e ©

(3.4 Equation(1.2) describes the temporal evolution of a sys-
tem with an absorbing state at=0. We are therefore par-
which follows from Eq.(3.2), and taking into account that ficularly interested in studying the first-passage time to that
a(t)—0 ast—o, we obtain from Eq(3.3) state, i.e., the absorption tintg, and how it depends on the
characteristics of the random driving force. Sid@) is the
1—w probability that at time the system is in the absorbing state,
m, (£~ 2 r( ﬂ)zg/zgg—z(w)e—wt (tce). the differenceA(t+dt)—A(t) is the probability thax(t)
' Jr 2 a reaches that state during the time interviat € dt). Conse-
(3.5  quently, the PDPRw(t) of the absorption time, is given by
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w(t)=dA(t)/dt. Using Eq.(2.12, we obtain forw(t) the
following general expression:

W(t)—\/z(l— )2
B (1)
o 0

This formula implies thawv(t) goes to zero asgoes to zero
and ast goes to infinity. The short-time behavior of(t)

reflects the initial conditiorx(0)=xy>0. The probability
that the system enters the absorbing state at tirhas to

1 .& AL

0

Xg(l_ a)87 2wt

4.1
205(t) @

vanish ag approaches zero. The PDF of the absorption time

must also approach zero aigoes to infinity, since it is inte-
grable,fdtw(t)=A(x). In other words, conditioned on the
sample paths that ultimately become trapped in the state

=0, the probability that the first-passage time into that state

ist, must go to zero sufficiently fast &goes to infinity. Note
thatw(t) is normalized to 1 only in the case of almost sure
absorptionA(»)=1.

If the colored Gaussian noidét) is Markovian, i.e., if it

PHYSICAL REVIEW E65 061109

1 1 12
Vo(T):E(m : (4.9
) 112

For 7—0, the functionV, (7) has a single asymptotic behav-
ior V,(7)~ 7. For r—x, Eqgs.(4.6)—(4.9) yield different
asymptotic behaviors for different values f

( )\e()\_l)T

W=D 1+ ———], rA<-1,
DY
V2(1+7e727), A=-1,
V, (1)~ — (1-ne?n)
AA—1) 1+—2(1+>\) , —1<\<0,

127, =0,

L VA(A+De ™7, A>0.

(4.10
If R(0)—o0, t,—0, such thalR(0)t.=A, i.e., if f(t) is

is an Ornstein-Uhlenbeck process, then its correlation funcGaussian white noise with intensity, thenx(t) is a Mar-

tion has the exponential forf(u) = R(0)e ™', wheret, is
the correlation time. In this case, Eq2.6) and(2.8) yield

—2\T

oa(t)=(1- oz)ZR(O)tgm[wr 1+(N—1)e*"

_2)\8()\_1)7] (42)

and
1— e—()\+l)7'

Aw(t):R(O)tcT

4.3

(7=tlt;, A= wt.), respectively, and Ed4.1) can be written

in the form
2 \ﬁ dVy(7) )
w(t)=— E P exd —pVy(7)]. (4.9
Here
R ws
P 2(1— a)?R(0)t2 '
is a dimensionless parameter, and
Vi(7) ML) )1/2 (4.6
T)= .
h N+ 1+ (A1) —2neh D)7

is @ monotonically decreasing function efthat at the sin-
gular pointsA =0,* 1 is defined as
) 1/2

|

2
1-(1+27)e %7

V_1(7) 4.7

kovian diffusion proces$28]. SinceA—0 and 77— (A7
= wt), Egs.(4.2) and(4.3) can be written as

_ A 2wt

aﬁ(t)z(l—a)zAl— (4.11)
w

andA (t)=A, respectively. Taking into account also that

Vi(r)
te

w

eZwt_ 1

, (4.12

32
1 )

) , (413

te—0

we obtain from Eq(4.4) the formula

2wt
e

X(2)(17 @)

11—«

[ 2 X
TAl—a
ol

which is valid for all real values obv. In particular, fora
=w=0 [whenx(t) is the Wiener process or Brownian mo-
tion] Eq. (4.13 reduces to the known resy29]

|

V. MEAN ABSORPTION TIME

w

w(t)=

ol _

T 2(1-a)?A e2t—1

X2

w(t)= (4.149

-0
4At

Xo
\/47TAt3/ZeX[{

A. General results

In the previous section, we have derived the PDF of the
absorption time, i.e., of the first-passage time of the system
from x(0)=X¢>0 to x=0. An important numerical charac-
teristic of that PDF is the mean first-passage time or mean
absorption timeT. Since fork<<0, absorption does not occur
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almost surely, the mean absorption time is given by a condi- p (= )

tional average, namelf,=(ty),, where(), denotes averag- T=2t.\/— dve ™ 7 (v), (5.9

ing with respect to those sample pathsf@f) for which the TIVA)

system state(t) eventually becomes trapped in the absorb-

ing statex=0. Using the general expressidA.l) for the  Where Vi()=vA(x—1) for A<0, Vy()=0 for \=0,

absorption time PDF, we can write the mean absorption tim@nd 7.(v) is the solution Oflthe equation=V,(7) with

T in the form respect tor. SinceV,(7)~7 * as 7—0, we obtainr, (v)
~v~tasv—, and, using Eq(4.10, we find the main term

© — o0):
T:f dt twi(t). 5.0 of the asymptotic expansion af (v) for v —V,(*):
° (A=1)"LIN[o—Vy ()], A<-1,
If the systematic force drives the system toward the absorb- (2N) " YIn[v =V, (®)], —1<\<0,
ing state, i.e., ilk>0 (w>0), then the absorption time PDF (v)~ o1 (5.5
decays exponentiallyw(t)=<e” !, ast—, and the mean (20977, A=0,
absorption timeT is finite, T<o. If the systematic force —x"tinv, A>0.

drives the system away from the absorbing state, i.ex, if
<0 (w<0), then absorption is not certaiA(»)<<1. Ast This result implies that the integral in E¢h.4) diverges only
—oo, Egs.(2.8) and(2.19 yield A ,(t)=o(e*l") ando2(t)  for the critical case, i.e., ik=0 (k=0). So,T=c0 for A

xe2elt respectively. Thereforew(t)=o(e Iy ast—wx, =0, and T<= otherwise, which agrees with our general
and the mean first-passage time conditioned on absorption igsults.
again finite, T<ec. The critical casex=0 (w=0) is more For A#0, we use Eq(5.4) to determine the asymptotic

complicated, since either stochastic localization or varioudehavior ofT asp—0 andp—. As is clear from Eq(4.5),
types of diffusive behavior occur. If the conditié®.22 does  physically the limitp—0 corresponds to the limit of either

not hold, thencrg(t)~Ao(t)t—>oo and the initial system stat&, approaching the absorbing state
=0 or to the limit of the noise variand®(0) going to infin-
2 ) xé‘“ ity or the correlation time, going to infinity. In the same
w(t)~ ;(1_@ W (5.2 way, the limit p—o corresponds to the limit of eithery
0

—o or R(0)—0 ort.—0. In the first limit casep—0, we
ast—o. SinceAy(t)/t—0 for t—o, we obtain from Eg. represgnt _the_integral in E€5.4) as a sum of two integrals
(5.2 thatw(t)t—0 andw(t)t?>—, i.e., T=c. If the con-  OVer disjoint mtervalls[le(oc),a] and @,«). Since for\
dition (2.22 holds, thenoy(*)< and Eq.(4.1) yields #0 apd p—0, the first mte.gral converges and the second
w(t)<Ao(t) for t—c. In the case of stochastic localization, ©n€ diverges, the asymptotic equality
T<w, if Ag(t)=0(14?), and T=oe, if t?Ay(t)—> ast ; )
—. _ _ f dv e‘pvzn(v%f dve P’r(v) (56

If A(e0)=1, the sample paths that contributeTtanclude V(%) a
with probability 1 all sample paths of the random driving
force f(t). The mean absorption tiniE coincides then with  holds. If the value ofa is large enough, i.e.r,(a)~a ™1,
the unconditional mean absorption time, which is defined bythen
the averaging ofty over all sample paths of(t), i.e., T

= e X 1 1

=(tg). For A(«)<1, the last equality can be violated. The w )
total probability of the sample paths for whiglit) does not f dve P n(v)~ f_ dx S LU Y
reach the absorbing state, even as time goes to infinity, is @ vpa P
nonzerdit equals I- A(«)], and so(ty) =, while T can be .
finite as we saw above. (p—0), and we obtain

B. Ornstein-Uhlenbeck noise T”%\/%'”% (p—0). (5.9

To gain further insight into the temporal behavior of the

system(1.2), we study the properties of the mean absorption For p—oo, the dominant contribution to the integral in Eq.

:Ir:]seszgg;é\tl;/gn(;ansc(ieéalzggg’w(airtr;s:\%ggiw?r?gifaljanXISSOIrn 5.4) comes from the lower limit of integration. In this case,
: gs.(5.4) and(5.5) yield

ing to Egs.(4.4) and(5.1), the mean absorption time for the
case of Ornstein-Uhlenbeck noise is given by

p * o2
T~2t \ﬁa dve P In[v—V,(»)], (5.9
o dv c Aj . A
T:_ZIC\/EJ drr (;\f_T)efpvi(T). (5.3 TN

0

wherea,=(A—1)"tif A\<—1, a,=(2\) " tif —1=\<0,
Introducing the new variable=V,(7), we can rewrite Eq. anda,=—\"1if \>0. Introducing the new variabke=uv
(5.3 as -V, (e°) and taking into account that
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- 5 1 = 1 where
f dxe P Inx~—-+/=In= (p—x), (5.10
0 4Vp p 2(1-a)
Xo ||
, 9= 5 (5.16
we find from Eq.(5.9) for A>0 that 2(1-a)’A
t . . .
T iln b (po). (5.11) is a dimensionless parameter, and
i w 0, w>0,
If A<O, thenV, («)#0, and the asymptotic formula lw:tmlcﬂ(ez—"’t—l)_ 1. <0 (5.17
» e PVi(=) o )
f dx e P2 |y x~————Inp (5.1 (Recall thatT=% for «=0.) Taking into account that;,
0 2pVi(=) =1, and
(p—) holds, and so sgnw |1+1K, >0, 5.18
+——= , .
o PVE() l,+x [(1+1x)71 <O,
T~t4ay] (5.13

we can reduce Eq5.15 by a change of variables=y?
-1, to the form

\/Eeglw o0 efgx
T=1\/— f dx In
7 2lwl Jo T I +x

For >0, the mean absorption tim&.19 can be repre-

—————Inp (p—).
VTPV () PP

If p— o, then according to Eq$5.11) and(5.13 T—x
for A>0, andT—0 for A<0. This result, the second part of
which is rather puzzling at first sight, can be understood as
follows. Recall that\ =(1— «a)«t,. For A>0, the system-
atic force drives the system toward the absorbing state, while
for A<0, it drives the system away from that state. That ; : : :
—o asp—o for A>0 then reflects simply the fact that, the Z%rggr(]jdit:;mg generalized hypergeometric functies the
farther away the system starts from the absorbing state or the
weaker the colored noise, the longer it takes on average for
the system to become trapped in the state0. The seem-
ingly strange results thaf—0 asp—o for A<0 can be

understood as follows. The systematic force drives the sys-

tem away from the absorbing state and, as either the initia] '€ Same result follows also from the usual apprda@z to
state of the system goes to infinity or the influence of the€ first-passage time problem for Markovian diffusion pro-

noise goes to zero, the probability for the system to be in th&€SSes: According to that approach, the unconditional mean
absorbing state at=o,A(=), rapidly goes to zero. The aPsorption time is given by

mean absorption tim& is a conditional average, and the
(to) 2fx° dy fmd 92
= —_— Z—,
0 o ¢(y)Jy B(2)

total probability of sample paths df{t) that lead to absorp-
where ¢(x) = exp{/dx'[2A(X')/B(X')] }, B(x) = 2Ax%%, A(X)

. (519

1
1+ =
X

Vg (1_3 ) g

3
T= — F137379 _Zze(l'l;E’Z;g)' (5.20

: (5.21)
tion goes to zero. Indeed, f&(u)=R(0)e™ Y, Egs.(2.12

and (4.2 yield A(=)=erfd \pV, ()], and therefore

e PVi(=) =aAx?* - kx. Using the equality
A(R)~ === (p—). (5.14
Vo) ¢(Z)_(z)“ ;{ K(z2<1“>—y2<1“>)} (5.22
o(y) |y T 2A(1-a) :

The comparison of Eqs(5.13 and (5.14 shows thatT

~to[ay[A(*)InpandT—0 asp—c. and the new variables of integration

C. Gaussian white noise ( y |2(-a) z )2(1—a)
. . . L . . u=|— , =|— -u, (5.23
When f(t) is Gaussian white noise, it is easily verified Xo Xo
that the intrinsic boundary=0 of the Markovian diffusion
processx(t) is accessible in finite time and is a regular we can transform Eq(5.21) to the form
boundary[23]. The PDF of the absorption time is given by
Eq. (4.13. Substituting it into Eq(5.1) ;’;md introducing the £y g J'ldu * do v sgne (5.24
r;e(\)/v variabley = {sgnw/[ exp(2wt)—1]}*’2, we obtain forw (to) 2llJo Julo \/vTue : -
B In agreement with the general results obtained at the begin-
T= \ﬁif dy e 9 In| 1+ sgnw)’ (5.15  hing of this section, Eq(5.24) yields (to)= for w<0. If
T, 2 »>0, then using the standard integrf89]
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= dv p tive, long-term survival occurs with nonzero probability, but
f e %= +/—e%erfc(\gu), not with probability 1. In the presence of external noise,
0 yvtu 9 survival is never certain. In the critical case of zero growth,

the fluctuations drive the system to extinction, with one ex-
fldu U erfe((gu) = Z\E £ (1 1_3 5. ception. If regions of positive and negative correlations in
o ﬁe erfc(vgu)=—24/—2F2| 1.1,5,2/g the noise cancel each other out, then the system has a chance
of avoiding extinction. The absorption, or extinction, process
13 was analyzed in more detail for Ornstein-Uhlenbeck noise,
+21F1(—? Pk ) (5.29  the most common model of colored noise. For systems with
negative growth rates, the mean time to extinction depends
we obtain from Eq(5.24) that(ty)=T, whereT is given by only weakly, namely, logarithmically, on the noise variance
Eq. (5.20, which also agrees with our general results. as the latter decreases toward zero. Even a large reduction of
As for the case of Ornstein-Uhlenbeck noise, we study théhe noise variance lengthens the average survival time only
asymptotic behavior of the mean absorption tifieEq.  Moderately. For systems with positive growth rates, the prob-
(5.19, as either the initial state, goes to zero or the noise ability of ultimate extinction decreases somewhat faster than
intensity A goes to infinity, i.e.,g—0, and as either the exponentially as the variance of the noise decreases toward

initial statex, goes to infinity or the noise intensity goesto ~ Z€ro. Here, even a small reduction in the variance of the
zero, i.e.,g— . According to Eq.(5.19, if g—0, then external noise greatly improves the chance of long-term sur-

N

vival.
g 1 (= dx 1 The method we developed in this paper for the study of
T~ ;mjo ﬁln 1+ ;) , (5.26 the exactly solvable modél.2) can be extended to the class

of models with an absorbing state that are described by Eq.
(1.1). We assume that the functioR{x) andg(x) are such

and, taking into account that that the Langevin equation
1
1+-—
X

fw dx | ‘277, >0, -
n = . .
0 Vl,+x 4In2, <0, 527 [x(H) = F(x(t)]g ™ (x(t)=f(1) (6.2)
we obtain forg—0 _ _
[x(0)=x4] has a single-valued solutiot{t) whose range of

Jrg (1, >0, values contains the point=Xx. (Without loss of generality

NW (2In2)/7, w<O. (528 we setx=0.) Let G(x,t) be the probability density that
X, (1) =x, wherex, (t) is the solution of Eq(6.1) for x(0)

If g—ce, then the main contribution to the integral in Eq. =+x,. If F(—x)=—-F(x) and g(—x)=g(x), then

(5.19 comes from a small vicinity of the lower limit of G(—x,t) is the probability density thak_(t)=x, where

T

integration. Equationi5.19 yields X_(t) is the solution of Eq(6.1) for x(0)= —Xx,. With the
help of those densities we can construct the probability den-
e 9ing “d e 5 sity P(x,t) of the solution of Eq.(1.1) with an absorbing
T~ 2\7w| Jo ym’ (5.29 state atx=0. By analogy with Eq(2.9) we obtain
and so P(x,1)=G(x,t) — G(—x,t) + A(t) 8(x), (6.2
Ing 1, w>0,
T~——X .
2| e 9Vmg, w<O0, (5.39 where
asg—oe. Thus, ifg—o thenT— o for >0, andT—0 for .
<0, for the same reasons as in the case of Ornstein- A(t)=1—f dX[G(x,t)—G(—x,t)] 6.3
Uhlenbeck noise. 0 ’ ’

VI CONCLUSIONS is the probability that the system governed by Eql) is in

We have derived exact, analytical expressions for varioughe absorbing state=0 at timet. In other words, the PDF
quantities characterizing the absorption process in a moddé(x,t) for the system(1.1) is fully defined by the PDF
system with a linear growth term and driven by multiplica- G(x,t) for the system described by E@.1). This simplifies
tive colored Gaussian noise. As mentioned in the Introducthe problem considerably, because no boundary conditions
tion, this model describes certain chemical and biologicabre needed to fin€(x,t). Note also that, if the stationary
systems. The absorbing state of the Langevin equafidh  PDF Gg(X) =G(X,%) exists, thenGg(—x)=Gg(x), and
represents extinction in those applications. If the growth ratéhe system described by E¢l.1) is in the absorbing state
is negative, extinction is inevitable. If the growth rate is posi-x=0 with probability 1 att=oc.
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APPENDIX  a - i (@), .. _(ap)nxn
For >0, we write Eq.(5.19 as e 0 (b)) . . . (bg)an!”’
(A7)
g1l
= Zw(K 1~ Ko, (AL) and @),=I'(a+n)/I'(a). Taking into account that
where J 1 * F(n)gn
i Salripe N VWY
. e_gx aplFl(pvz p!g)‘p_o I‘]Zl (1/2)nn|
Kg=f dx In(o+Xx). (A2) .
0 & —» 2 2(n+1)g
—2g> — 7
If =0, then[30] 0 (3/2),I'(n+2)n!
™ _2 2 (1n(1)ng"
- 5[7+ln(4g)] (A3) 5 (3/2),(2),n!
(y=0.5772 is the Euler constantUsing the integral repre- _ ( E . )
sentation of the degenerate hypergeometric fundtain 202F2| 115,219 (A8)
V(a,c;x)= j dy e Wya l(1+y)c a1 (A4) 9 I'(12—p) _
I'(a) op T(12) - y+2In2, (A9)
(a>0), we obtain forK; . 2
a T(p—1/2
g (13 W T | =T 2\, (A10)
Klz_ﬁ%‘l’ 55 P9 (A5) p Pl p=o

p=0
. lim,_ol'(p—21/2)/T(p)=0, ag* Y% ap|,—o=I ,
We used the following formul@30] to evaluate the de- lr;]f(oo; 1§g;g)=1), V\Eg)ﬁnd ’ Ply=o=IngiVg. and

rivative in Eq.(A5):

13 3
K1:2771F1(§§ E;g) _2\/7792F2< 1,1;5,2;9)

13 T(1/2—p) 1
. — p—1/2 . .

Yizz7rie

I'(p—1/2 13 \/;[

AUt~ BRI —\/=[v+In(49)]. (A11)
where 1F,(a;b;x) is the special case of the generalized hy-Substituting Eqs(A3) and (A1l) into Eq. (A1), we obtain
pergeometric functiof31] Eq. (5.20.
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