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Exactly solvable model with an absorbing state and multiplicative colored Gaussian noise
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We study the temporal evolution of a system that has an absorbing state and that is driven by colored
Gaussian noise, whose amplitude depends on the system statex as uxua. Exact, analytical expressions for the
probability density functions of the system and of the absorption time are derived. We also calculate numerical
characteristics of the probability density functions, namely, the fractional moments of the system and the mean
absorption time, and analyze the role of the functional form of the noise correlation function.
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I. INTRODUCTION

Many systems and models in physics, chemistry, biolo
and other fields possess absorbing states. Such states c
reached by the dynamics of the system, but once the sys
attains an absorbing state, the dynamics does not allow
escape and the system is trapped in that state. Systems
absorbing states have attracted particular attention over
last decade, since they can display nonequilibrium ph
transitions between active and inactive phases@1–3#. Well-
studied examples include the spreading of epidemics@4,5#,
reaction-diffusion models of surface catalysis@6,7#, transport
in random media@8,9#, forest fires@10#, surface growth@11#,
and contact processes with aging@12#.

The simplest nonequilibrium situations are models or s
tems without spatial structure. Examples are well-stirred
tocatalytic chemical reactions, such as the Schlo¨gl model
@13#, lumped models in population biology, such as the
gistic or Verhulst model@14#, or an overdamped particle in
potential subjected to a random driving force@3#. Such sys-
tems can display absorbing states, and their dynamics ca
described by a Langevin equation,

ẋ~ t !5F„x~ t !…1g„x~ t !…f ~ t !, ~1.1!

whereF(x) andg(x) are deterministic functions, andf (t) is
a stationary Gaussian noise with zero mean and arbit
correlation function R(u) @R(0).0, R(`)50#. Equation
~1.1! possesses an absorbing statex̃, if that state can be
reached dynamically and if both the systematic force and
random driving force vanish in that state, i.e., ifF( x̃)50 and
g( x̃)50. Clearly, only systems with multiplicative noise
i.e., g(x)[” const, can display absorbing states that are
intrinsic property of the dynamics.

We study the statistical properties of a nonlinear syst
that belongs to the class defined by Eq.~1.1!. It is described
by the Langevin equation
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ẋ~ t !52kx~ t !1ux~ t !ua f ~ t !, ~1.2!

and has the advantage of being exactly solvable. The s
x50 can be an absorbing state for this system only ifa
.0. Fora>1, this state cannot be reached in a finite amo
of time, and we restrict our consideration therefore to
interval 0,a,1. Most commonly encountered in applica
tions is the valuea51/2. Multiplicative noise of this type
occurs in models of lasers@15#, and in models of chemica
reactions and epidemics@16–19#. The latter belong to the
universality class that can be represented by the Lang
equation of Reggeon field theory. The spatially homogene
version of that equation coincides with Eq.~1.2! for smallx.
In addition to considering the Langevin equation~1.2! as a
model in its own right, it can also be thought of as an a
proximation that retains only the lowest order term of t
systematic forceF(x) and the multiplicative noise termg(x)
in an expansion around the absorbing state. For this rea
we consider not only the casek.0, where the systematic
force in the absence of noise drives the system toward
absorbing state, i.e.,x50 is deterministically linearly stable
but also the casek,0, which corresponds to a determinist
cally linearly unstable steady state atx50.

As discussed in a previous paper@20#, Eq. ~1.2! has the
interesting feature that for 0,a,1 the solution is not
unique atx50. There are two solutions that pass throu
zero, one for whichx50 is a regular point and one for whic
x50 is an absorbing state. In Ref.@20#, we studied the
former type of solution, which coincides with that of th
Langevin equation

@ ẋ~ t !1kx~ t !#ux~ t !u2a5 f ~ t ! ~1.3!

for all times t>0. Specifically, we found the univariate an
bivariate probability density functions~PDFs!, the fractional
moments, the correlation function, and the fractal dimens
of the solution. As mentioned above, in this paper we stu
the statistical properties of the system~1.2! with an absorb-
ing state atx50. In that case, for the initial conditionx(0)
5x0.0, the solution of Eq.~1.2! coincides with the solution
of Eq. ~1.3! only for 0<t<t0. For t.t0, the system~1.2!
remains trapped in the statex50, i.e.,x(t)[0, whereas sys-
©2002 The American Physical Society09-1
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tem ~1.3! has a nonzero solution@20#. Heret0P(0,̀ # is the
absorption time. It is the instant whenx(t)50 for the first
time, or, in other words,t0 is the so-called first-passage tim
At the random instant of timet5t0, the system~1.2! be-
comes trapped in the dynamically completely inactive st
x50.

We use the results of Ref.@20# to derive exact, analytica
expressions for the PDF of the system~1.2! with x50 an
absorbing state, as well as the absorption time probab
density. We find thatk50 is the critical value. Fork posi-
tive, absorption is certain, while fork negative, the system
remains in the active state with nonzero probability even
time goes to infinity. At the critical value ofk, either various
types of diffusive behavior or stochastic localization occ
depending on the correlation function of the noise. Only
the former case is absorption the ultimate fate of the syst
Survival is possible in the latter case.

The paper is organized as follows. In Sec. II we find t
PDF for the solution of Eq.~1.2!. We derive the exact ex
pressions for the fractional moments ofx(t) and calculate
their asymptotic behavior in Sec. III. In Sec. IV we find th
PDF for the absorption time. We calculate the mean abs
tion time in Sec. V. We also determine its behavior as
initial state of the system approaches either the absor
state or the noise intensity goes to infinity as well as the li
of the initial state going to infinity or the intensity of th
noise going to zero. We discuss extensions of our result
Sec. VI.

II. PROBABILITY DENSITY FUNCTION

A. PDF for Eq. „1.3…

For the convenience of the reader, we briefly summa
the main results of Ref.@20#. To find the PDFP(x,t) for the
solution of Eq.~1.2! with x50 an absorbing state, we obta
first the equation for the PDFPx(x,t) of the solution of Eq.
~1.3!. According to Ref.@20#, the solution of the latter equa
tion has the form

x~ t !5@x0
12ae2vt1q~ t !#ux0

12ae2vt1q~ t !ua/(12a),
~2.1!

wherev5(12a)k, and

q~ t !5~12a!E
0

t

dt8e2v(t2t8) f ~ t8!. ~2.2!

Since

q~ t !5x~ t !ux~ t !u2a2x0
12ae2vt, ~2.3!

a one-to-one correspondence exists betweenx(t) andq(t). If
Pq(q,t) is the probability density thatq(t)5q, then
Px(x,t)dx5Pq(q,t)dq and we obtain

Px~x,t !5
12a

uxua
PqS x

uxua
2x0

12ae2vt,t D . ~2.4!
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If f (t) is a Gaussian noise, thenq(t) is also a Gaussian
process, and Eq.~2.4! is reduced to the power-normal distr
bution @20#

Px~x,t !5
12a

A2psq~ t !uxua
expH 2

1

2sq
2~ t !

S x

uxua

2x0
12ae2vtD 2J ~2.5!

@xP(2`,`)#. Here sq
2(t)5^q2(t)& is the dispersion of

q(t)@^& denotes averaging with respect to the noisef (t)],
which is given by

sq
2~ t !52~12a!2

e2vt

v E
0

t

du R~u!sinh@v~ t2u!#.

~2.6!

One can verify thatPx(x,t) satisfies the Fokker-Planc
equation

]

]t
Px~x,t !5

]

]x
@kx2Dv~ t !axuxu2(a21)#Px~x,t !

1Dv~ t !
]2

]x2
uxu2aPx~x,t !, ~2.7!

where

Dv~ t !5E
0

t

du R~u!e2vu5
sq~ t !ṡq~ t !1vsq

2~ t !

~12a!2
.

~2.8!

Specifically, if f (t) is Gaussian white noise, thenR(u)
52Dd(u) (D is the white noise intensity!, and Eq.~2.8!
yieldsDv(t)5D. The solutionx(t) is a Markovian diffusion
process, and Eq.~2.7! corresponds to the Stratonovich inte
pretation@21# of Eq. ~1.2!. To avoid any misunderstanding
we emphasize that for colored Gaussian noisef (t) the ran-
dom processx(t) is not Markovian, in spite of the fact tha
Px(x,t) obeys the Fokker-Planck equation~2.7!.

B. PDF for Eq. „1.2…

Recall that the solution of Eq.~1.2! with an absorbing
state atx50 coincides with the solution of Eq.~1.3! up to
the random absorption timet0. Therefore, the PDFP(x,t) of
Eq. ~1.2! can be obtained in the following way. Le
W(x,t)(0<x<`) be the solution of Eq.~2.7! that satisfies
the absorbing boundary conditionW(0,t)50. As for Mar-
kovian diffusion processes@22–24#, the PDFP(x,t) is then
given by

P~x,t !5W~x,t !1A~ t !d~x!, ~2.9!

where

A~ t !512E
0

`

dxW~x,t ! ~2.10!
9-2
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EXACTLY SOLVABLE MODEL WITH AN ABSORBING . . . PHYSICAL REVIEW E65 061109
is the probability that at timet the system described by Eq
~1.2! is in the absorbing statex50. Using the method of
images~see, for example, Ref.@25#! we can expressW(x,t)
in terms ofPx(x,t),

W~x,t !5Px~x,t !2Px~2x,t !, ~2.11!

and from Eqs.~2.5! and ~2.10! we find

A~ t !5erfc@a~ t !/A2#. ~2.12!

Here erfc(z)5(2/Ap)*z
`dt exp(2t2) is the complementary

error function, anda(t)5x0
12ae2vt/sq(t).

It is easily verified from Eq.~2.11! that W(x,t) indeed
fulfills the absorbing boundary conditionW(0,t)50, but the
asymptotic behavior ofW(x,t) asx→0 can be singular. Fo
t.0, Eqs.~2.5! and ~2.11! lead to the asymptotic formula

W~x,t !;A2

p

~12a!a~ t !

sq
2~ t !

e2a2(t)/2x122a ~2.13!

(x→0). This implies thatW(x,t)→0 for 0,a,1/2, and
W(x,t)→` for 1/2,a,1. Note that the singularity o
W(x,t) for 1/2,a,1 is an integrable one.

C. Short- and long-time behavior of the absorption probability

The absorption probabilityA(t), the probability that at
time t the system is in the dynamically inactive statex50, is
an important quantity for characterizing the temporal beh
ior of the system~1.2!. We now analyze the short- and long
time behavior of this quantity. Sincex(0)5x0.0, we expect
the absorption probability to approach zero ast goes to zero.
The ultimate fate of the system is described by the long-t
behavior ofA(t). If k.0 (v.0), i.e., the systematic forc
drives the system toward the absorbing state andx50 is a
deterministically stable state, then we expect the system
become trapped eventually in the absorbing state as
goes to infinity. On the other hand, ifk,0 (v,0), i.e., the
systematic force drives the system away from zero and
absorbing state is deterministically unstable, then we exp
the opposing effects of the systematic force and the rand
driving force to render the eventual trapping of the syst
less certain.

It follows from Eq.~2.12! that the asymptotic behavior o
A(t) as t→0 and t→` is determined by the asymptoti
behavior ofa(t). We consider the case, frequently encou
tered in applications, that the leading asymptotic term of
correlation function of the colored Gaussian noiseR(u)
obeys a power law, i.e.,R(u);cau2b as u→0 (ca
.0, 0<b,1). Then Eq.~2.6! yields

sq
2~ t !;

2ca~12a!2

~12b!~22b!
t22b ~ t→0!, ~2.14!

and
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a~ t !;
x0

12a

12a
A~12b!~22b!

2ca

1

t12b/2
~ t→0!,

~2.15!

i.e., the parametera(t) diverges ast→0. Taking into account
that erfc(x);exp(2x2)/(Apx) asx→`, we obtain from Eq.
~2.12! for t→0 the asymptotic formula

A~ t !;A2

p

1

a~ t !
expS 2

a2~ t !

2 D , ~2.16!

wherea(t) is given by Eq.~2.15!. As expected,A(t)→0 as
t→0 in agreement with the initial conditionx(0)5x05” 0.

If k.0 (v.0), then

sq
2~`!5~12a!2

1

vE0

`

du R~u!e2vu ~2.17!

@sinceR(u)→0 asu→`, the conditionsq(`),` holds#,
anda(t);x0

12ae2vt/sq(`) and

12A~ t !;A2

p

x0
12a

sq~`!
e2vt, ~2.18!

as t→`. So the probability of finding the system in the a
sorbing statex50 tends to 1 ift→`, as expected.

For k,0 (v,0) andt→`, Eq. ~2.6! yields

sq
2~ t !;~12a!2

e2uvut

uvu E0

`

du R~u!e2uvuu, ~2.19!

which implies

a~`!5
x0

12a

12a S 1

uvu E0

`

du R~u!e2uvuuD 21/2

, ~2.20!

andA(`)5erfc@a(`)/A2#. As expected,A(`),1. The ran-
dom driving force is not strong enough to overcome the s
tematic force with probability 1; the system has a nonz
probability of surviving indefinitely in the active state.

Finally, for k50 (v50), Eq. ~2.6! is reduced to

sq
2~ t !52~12a!2E

0

t

du R~u!~ t2u!. ~2.21!

If

D0~ t ![E
0

t

du R~u!5o~1/t ! ~ t→`!, ~2.22!

thensq(`),`, i.e., the phenomenon of stochastic localiz
tion of x(t) occurs@26# ~see also Sec. III!, and A(`),1.
This remarkable result shows that there is a nonzero p
ability that the system is in the active state ast→`. From a
physical point of view, the possibility of the system survivin
indefinitely is due to the fact thatx(t) and x(t1) are corre-
lated in the case of stochastic localization even forut12tu
→` @20#. Stochastic localization occurs if the noise intens
R[D0(`) vanishes, i.e., if contributions from regions o
9-3
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positive and negative correlations in the noisef (t) cancel
each other out. It is this balance in the random driving fo
itself that allows the system to survive in the active state w
a nonzero probability. Otherwise, i.e., if either 0,R<` or
R50 and condition~2.22! does not hold, we havesq(`)
5` andA(`)51.

Our results show that sublinear multiplicative color
Gaussian noise does not change the critical valuekc for a
linear restoring force. We find that fork.0, A(`)51, and
for k,0, A(`),1, i.e., kc50. The critical situation it-
self, however, splits into two cases. If the noise intensityR
vanishes and condition~2.22! is fulfilled, the system has a
chance of ultimate survival, whereas otherwise ultimate tr
ping occurs with probability 1.

III. FRACTIONAL MOMENTS

In the previous section, we achieved our main go
namely, to obtain the PDF of the solutionx(t) of Eq. ~1.2!
with an absorbing state atx50, and the absorption probabi
ity. In this section, we will consider a more concise descr
tion of the system and calculate numerical characteristic
the random processx(t). Moments are of particular interes
in applications, and here we consider the fractional mome
mr(t)(r .0) of x(t),

mr~ t !5E
0

`

dx xr P~x,t !. ~3.1!

Using the integral representation of the Weber parabolic
inder functions@27#

D2m~x!5
e2x2/4

G~m!
E

0

`

dy ym21e2y2/22xy ~m.0! ~3.2!

@G(m)5*0
`dy ym21e2y is the gamma function#, we can re-

duce Eq.~3.1! to the form

mr~ t !5
G~j!

A2p
e2a2(t)/4sq

j21~ t !$D2j@2a~ t !#2D2j@a~ t !#%,

~3.3!

wherej511r /(12a).
We now study the long-time behavior ofmr(t). If k.0,

then using the asymptotic formula

D2j~2x!2D2j~x!;
2j/211/2

G~j!
GS j11

2 D x ~x→0!,

~3.4!

which follows from Eq.~3.2!, and taking into account tha
a(t)→0 ast→`, we obtain from Eq.~3.3!

mr~ t !;
x0

12a

Ap
GS j11

2 D2j/2sq
j22~`!e2vt ~ t→`!.

~3.5!
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The fact thatmr(`)50 together withA(`)51 implies that
P(x,`)5d(x). The stationary probability of the system
entirely concentrated on the absorbing statex50.

If k,0, then Eqs. ~2.19! and ~2.20! yield sq(t)
;x0

12aeuvut/a(`), and Eq.~3.3! leads to the asymptotic for
mula

mr~ t !;x0
r G~j!e2a2(`)/4

A2paj21~`!
$D2j@2a~`!#2D2j@a~`!#%er ukut

~3.6!

(t→`), where a(`) is given by Eq.~2.20!. Thus, for k
,0 all fractional moments diverge ast→`; no stationary
PDF exists. Recall thatA(`),1. The fact that all moments
go to infinity ast→` has the following implication. If the
system avoids being trapped in the statex50, then there is a
nonzero probability thatx(t) undergoes arbitrarily large ex
cursions ast→`.

If k50 and Eq.~2.22! holds, thensq(`),` and all
fractional momentsmr(`) are finite, i.e., stochastic localiza
tion of x(t) occurs. When Eq.~2.22! does not hold, i.e.,
sq(`)5`, Eqs.~3.3! and ~3.4! yield

mr~ t !;
x0

12a

Ap
GS j11

2 D2j/2sq
j22~ t ! ~3.7!

(t→`). According to this formula,mr(`)50 for 0,r ,1
2a, 0,mr(`),` for r 512a, and mr(`)5` for r
.12a. So, althoughA(`)51, all fractional moments
mr(`) with r .12a are infinite. The system will almos
surely be trapped in the absorbing state ast→`; however,
no stationary PDF exists. Even as time goes to infinity,
diffusive motion of the system results in excursions ar
trarily far away from the absorbing state. Specifically, t
dispersion of the system state,sx

2(t)5^x2(t)&2^x(t)&2, is
given bysx

2(t)5m2(t)2m1
2(t) and it follows from Eq.~3.7!

that sx
2(t);m2(t)→` as t→`. If D0(t)}th (21,h,1)

as t→`, then sq
2(t)}t11h, and therefore sx

2(t)
}t (11h)(11a)/(12a). The last relation shows that normal di
fusion @diffusion with sx

2(t)}t as t→`#, subdiffusion~dif-
fusion slower then the normal!, and superdiffusion~diffusion
faster then the normal! of x(t) take place, ifh522a/(1
1a), 21,h,22a/(11a), and 22a/(11a),h,1,
respectively.

IV. PROBABILITY DENSITY FUNCTION OF THE
ABSORPTION TIME

Equation~1.2! describes the temporal evolution of a sy
tem with an absorbing state atx50. We are therefore par
ticularly interested in studying the first-passage time to t
state, i.e., the absorption timet0, and how it depends on th
characteristics of the random driving force. SinceA(t) is the
probability that at timet the system is in the absorbing stat
the differenceA(t1dt)2A(t) is the probability thatx(t)
reaches that state during the time interval (t,t1dt). Conse-
quently, the PDFw(t) of the absorption timet0 is given by
9-4
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w(t)5dA(t)/dt. Using Eq.~2.12!, we obtain forw(t) the
following general expression:

w~ t !5A2

p
~12a!2x0

12a e2vtDv~ t !

sq
3~ t !

3expS 2
x0

2(12a)e22vt

2sq
2~ t !

D . ~4.1!

This formula implies thatw(t) goes to zero ast goes to zero
and ast goes to infinity. The short-time behavior ofw(t)
reflects the initial conditionx(0)5x0.0. The probability
that the system enters the absorbing state at timet has to
vanish ast approaches zero. The PDF of the absorption ti
must also approach zero ast goes to infinity, since it is inte-
grable,*0

`dtw(t)5A(`). In other words, conditioned on th
sample paths that ultimately become trapped in the stax
50, the probability that the first-passage time into that st
is t, must go to zero sufficiently fast ast goes to infinity. Note
that w(t) is normalized to 1 only in the case of almost su
absorption,A(`)51.

If the colored Gaussian noisef (t) is Markovian, i.e., if it
is an Ornstein-Uhlenbeck process, then its correlation fu
tion has the exponential formR(u)5R(0)e2u/tc, wheretc is
the correlation time. In this case, Eqs.~2.6! and ~2.8! yield

sq
2~ t !5~12a!2R~0!tc

2 e22lt

l~l221!
@l111~l21!e2lt

22le(l21)t# ~4.2!

and

Dv~ t !5R~0!tc

12e2(l11)t

l11
~4.3!

(t5t/tc , l5vtc), respectively, and Eq.~4.1! can be written
in the form

w~ t !52
2

tc
Ap

p

dVl~t!

dt
exp@2pVl

2~t!#. ~4.4!

Here

p5
x0

2(12a)

2~12a!2R~0!tc
2

~4.5!

is a dimensionless parameter, and

Vl~t!5S l~l221!

l111~l21!e2lt22le(l21)tD 1/2

~4.6!

is a monotonically decreasing function oft that at the sin-
gular pointsl50,61 is defined as

V21~t!5S 2

12~112t!e22tD 1/2

, ~4.7!
06110
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V0~t!5
1

A2
S 1

e2t211t
D 1/2

, ~4.8!

V1~t!5S 2

e2t2122t
D 1/2

. ~4.9!

For t→0, the functionVl(t) has a single asymptotic behav
ior Vl(t);t21. For t→`, Eqs.~4.6!–~4.9! yield different
asymptotic behaviors for different values ofl:

Vl~t!;5
Al~l21!S 11

le(l21)t

11l D , l,21,

A2~11te22t!, l521,

Al~l21!S 11
~12l!e2lt

2~11l! D , 21,l,0,

1/A2t, l50,

Al~l11!e2lt, l.0.
~4.10!

If R(0)→`, tc→0, such thatR(0)tc5D, i.e., if f (t) is
Gaussian white noise with intensityD, thenx(t) is a Mar-
kovian diffusion process@28#. Sincel→0 and t→` (lt
5vt), Eqs.~4.2! and ~4.3! can be written as

sq
2~ t !5~12a!2D

12e22vt

v
~4.11!

andDv(t)5D, respectively. Taking into account also that

lim
tc→0

Vl
2~t!

tc
5

v

e2vt21
, ~4.12!

we obtain from Eq.~4.4! the formula

w~ t !5A 2

pD

x0
12a

12a
e2vtS v

e2vt21
D 3/2

3expS 2
x0

2(12a)

2~12a!2D

v

e2vt21
D , ~4.13!

which is valid for all real values ofv. In particular, fora
5v50 @whenx(t) is the Wiener process or Brownian mo
tion# Eq. ~4.13! reduces to the known result@29#

w~ t !5
x0

A4pDt3/2
expS 2

x0
2

4Dt D . ~4.14!

V. MEAN ABSORPTION TIME

A. General results

In the previous section, we have derived the PDF of
absorption time, i.e., of the first-passage time of the sys
from x(0)5x0.0 to x50. An important numerical charac
teristic of that PDF is the mean first-passage time or m
absorption timeT. Since fork,0, absorption does not occu
9-5
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almost surely, the mean absorption time is given by a con
tional average, namely,T5^t0&a , where^&a denotes averag
ing with respect to those sample paths off (t) for which the
system statex(t) eventually becomes trapped in the abso
ing statex50. Using the general expression~4.1! for the
absorption time PDF, we can write the mean absorption t
T in the form

T5E
0

`

dt tw~ t !. ~5.1!

If the systematic force drives the system toward the abs
ing state, i.e., ifk.0 (v.0), then the absorption time PD
decays exponentially,w(t)}e2vt, as t→`, and the mean
absorption timeT is finite, T,`. If the systematic force
drives the system away from the absorbing state, i.e.,k
,0 (v,0), then absorption is not certain,A(`),1. As t
→`, Eqs.~2.8! and ~2.19! yield Dv(t)5o(euvut) andsq

2(t)
}e2uvut, respectively. Therefore,w(t)5o(e2uvut) as t→`,
and the mean first-passage time conditioned on absorptio
again finite,T,`. The critical casek50 (v50) is more
complicated, since either stochastic localization or vario
types of diffusive behavior occur. If the condition~2.22! does
not hold, thensq

2(t);D0(t)t→` and

w~ t !;A2

p
~12a!2

x0
12a

D0
1/2~ t !t3/2

~5.2!

as t→`. SinceD0(t)/t→0 for t→`, we obtain from Eq.
~5.2! that w(t)t→0 andw(t)t2→`, i.e., T5`. If the con-
dition ~2.22! holds, thensq(`),` and Eq. ~4.1! yields
w(t)}D0(t) for t→`. In the case of stochastic localizatio
T,`, if D0(t)5o(1/t2), and T5`, if t2D0(t)→` as t
→`.

If A(`)51, the sample paths that contribute toT include
with probability 1 all sample paths of the random drivin
force f (t). The mean absorption timeT coincides then with
the unconditional mean absorption time, which is defined
the averaging oft0 over all sample paths off (t), i.e., T
5^t0&. For A(`),1, the last equality can be violated. Th
total probability of the sample paths for whichx(t) does not
reach the absorbing state, even as time goes to infinity
nonzero@it equals 12A(`)#, and sô t0&5`, while T can be
finite as we saw above.

B. Ornstein-Uhlenbeck noise

To gain further insight into the temporal behavior of t
system~1.2!, we study the properties of the mean absorpt
time T for two cases, namely, Ornstein-Uhlenbeck noise
this subsection and Gaussian white noise in the next. Acc
ing to Eqs.~4.4! and~5.1!, the mean absorption time for th
case of Ornstein-Uhlenbeck noise is given by

T522tcAp

pE0

`

dt t
dVl~t!

dt
e2pVl

2(t). ~5.3!

Introducing the new variablev5Vl(t), we can rewrite Eq.
~5.3! as
06110
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T52tcAp

pEVl(`)

`

dv e2pv2
tl~v !, ~5.4!

where Vl(`)5Al(l21) for l,0, Vl(`)50 for l>0,
and tl(v) is the solution of the equationv5Vl(t) with
respect tot. SinceVl(t);t21 as t→0, we obtaintl(v)
;v21 asv→`, and, using Eq.~4.10!, we find the main term
of the asymptotic expansion oftl(v) for v→Vl(`):

tl~v !;5
~l21!21 ln@v2Vl~`!#, l,21,

~2l!21 ln@v2Vl~`!#, 21<l,0,

~2v2!21, l50,

2l21 ln v, l.0.

~5.5!

This result implies that the integral in Eq.~5.4! diverges only
for the critical case, i.e., ifl50 (k50). So,T5` for l
50, and T,` otherwise, which agrees with our gener
results.

For lÞ0, we use Eq.~5.4! to determine the asymptoti
behavior ofT asp→0 andp→`. As is clear from Eq.~4.5!,
physically the limitp→0 corresponds to the limit of eithe
the initial system statex0 approaching the absorbing statex
50 or to the limit of the noise varianceR(0) going to infin-
ity or the correlation timetc going to infinity. In the same
way, the limit p→` corresponds to the limit of eitherx0
→` or R(0)→0 or tc→0. In the first limit case,p→0, we
represent the integral in Eq.~5.4! as a sum of two integrals
over disjoint intervals@Vl(`),a# and (a,`). Since for l
Þ0 and p→0, the first integral converges and the seco
one diverges, the asymptotic equality

E
Vl(`)

`

dv e2pv2
tl~v !;E

a

`

dv e2pv2
tl~v ! ~5.6!

holds. If the value ofa is large enough, i.e.,tl(a);a21,
then

E
a

`

dv e2pv2
tl~v !;E

Apa

`

dx
e2x2

x
;

1

2
ln

1

p
~5.7!

(p→0), and we obtain

T;tcAp

p
ln

1

p
~p→0!. ~5.8!

For p→`, the dominant contribution to the integral in E
~5.4! comes from the lower limit of integration. In this cas
Eqs.~5.4! and ~5.5! yield

T;2tcAp

p
alE

Vl(`)

`

dv e2pv2
ln@v2Vl~`!#, ~5.9!

whereal5(l21)21 if l,21, al5(2l)21 if 21<l,0,
andal52l21 if l.0. Introducing the new variablex5v
2Vl(`) and taking into account that
9-6
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E
0

`

dx e2px2
ln x;

1

4
Ap

p
ln

1

p
~p→`!, ~5.10!

we find from Eq.~5.9! for l.0 that

T;
tc

2l
ln p ~p→`!. ~5.11!

If l,0, thenVl(`)5” 0, and the asymptotic formula

E
0

`

dx e2p[x1Vl(`)] 2
ln x;

e2pVl
2(`)

2pVl~`!
ln p ~5.12!

(p→`) holds, and so

T;tcualu
e2pVl

2(`)

AppVl
2~`!

ln p ~p→`!. ~5.13!

If p→`, then according to Eqs.~5.11! and ~5.13! T→`
for l.0, andT→0 for l,0. This result, the second part o
which is rather puzzling at first sight, can be understood
follows. Recall thatl5(12a)ktc . For l.0, the system-
atic force drives the system toward the absorbing state, w
for l,0, it drives the system away from that state. ThaT
→` asp→` for l.0 then reflects simply the fact that, th
farther away the system starts from the absorbing state o
weaker the colored noise, the longer it takes on average
the system to become trapped in the statex50. The seem-
ingly strange results thatT→0 as p→` for l,0 can be
understood as follows. The systematic force drives the s
tem away from the absorbing state and, as either the in
state of the system goes to infinity or the influence of
noise goes to zero, the probability for the system to be in
absorbing state att5`,A(`), rapidly goes to zero. The
mean absorption timeT is a conditional average, and the
total probability of sample paths off (t) that lead to absorp
tion goes to zero. Indeed, forR(u)5R(0)e2u/tc, Eqs.~2.12!
and ~4.2! yield A(`)5erfc@ApVl(`)#, and therefore

A~`!;
e2pVl

2(`)

AppVl
2~`!

~p→`!. ~5.14!

The comparison of Eqs.~5.13! and ~5.14! shows thatT
;tcualuA(`)ln p andT→0 asp→`.

C. Gaussian white noise

When f (t) is Gaussian white noise, it is easily verifie
that the intrinsic boundaryx50 of the Markovian diffusion
processx(t) is accessible in finite time and is a regul
boundary@23#. The PDF of the absorption time is given b
Eq. ~4.13!. Substituting it into Eq.~5.1! and introducing the
new variabley5$sgnv/@exp(2vt)21#%1/2, we obtain forv
Þ0

T5Ag

p

1

vEI v

`

dy e2gy2
lnS 11

sgnv

y2 D , ~5.15!
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where

g5
x0

2(12a)uvu

2~12a!2D
~5.16!

is a dimensionless parameter, and

I v[ lim
t→`

v

uvu~e2vt21!
5H 0, v.0,

1, v,0.
~5.17!

~Recall thatT5` for v50.! Taking into account thatI v
2

5I v and

11
sgnv

I v1x
5H 111/x, v.0,

~111/x!21, v,0,
~5.18!

we can reduce Eq.~5.15! by a change of variablesx5y2

2I v to the form

T5Ag

p

e2gIv

2uvu E0

`

dx
e2gx

AI v1x
lnS 11

1

xD . ~5.19!

For v.0, the mean absorption time~5.19! can be repre-
sented using generalized hypergeometric functions~see the
Appendix!

T5
Apg

v 1F1S 1

2
;
3

2
;gD2

g

v 2F2S 1,1;
3

2
,2;gD . ~5.20!

The same result follows also from the usual approach@24# to
the first-passage time problem for Markovian diffusion pr
cesses. According to that approach, the unconditional m
absorption time is given by

^t0&52E
0

x0 dy

f~y!
E

y

`

dz
f~z!

B~z!
, ~5.21!

where f(x) 5 exp$*xdx8@2A(x8)/B(x8)# %, B(x) 5 2Dx2a, A(x)
5aDx2a212kx. Using the equality

f~z!

f~y!
5S z

yD a

expF2
k~z2(12a)2y2(12a)!

2D~12a! G ~5.22!

and the new variables of integration

u5S y

x0
D 2(12a)

, v5S z

x0
D 2(12a)

2u, ~5.23!

we can transform Eq.~5.21! to the form

^t0&5
g

2uvu E0

1du

Au
E

0

` dv

Av1u
e2gv sgnv. ~5.24!

In agreement with the general results obtained at the be
ning of this section, Eq.~5.24! yields ^t0&5` for v,0. If
v.0, then using the standard integrals@30#
9-7
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E
0

` dv

Av1u
e2gv5Ap

g
egu erfc~Agu!,

E
0

1du

Au
egu erfc~Agu!522Ag

p 2F2S 1, 1;
3

2
, 2; gD

121F1S 1

2
;
3

2
;gD , ~5.25!

we obtain from Eq.~5.24! that ^t0&5T, whereT is given by
Eq. ~5.20!, which also agrees with our general results.

As for the case of Ornstein-Uhlenbeck noise, we study
asymptotic behavior of the mean absorption timeT, Eq.
~5.19!, as either the initial statex0 goes to zero or the nois
intensity D goes to infinity, i.e.,g→0, and as either the
initial statex0 goes to infinity or the noise intensityD goes to
zero, i.e.,g→`. According to Eq.~5.19!, if g→0, then

T;Ag

p

1

2uvu E0

` dx

AI v1x
lnS 11

1

xD , ~5.26!

and, taking into account that

E
0

` dx

AI v1x
lnS 11

1

xD5H 2p, v.0,

4 ln 2, v,0,
~5.27!

we obtain forg→0

T;
Apg

uvu
3H 1, v.0,

~2 ln 2!/p, v,0.
~5.28!

If g→`, then the main contribution to the integral in E
~5.19! comes from a small vicinity of the lower limit o
integration. Equation~5.19! yields

T;
e2gIv ln g

2Apuvu
E

0

`

dy
e2y

AgIv1y
, ~5.29!

and so

T;
ln g

2uvu
3H 1, v.0,

e2g/Apg, v,0,
~5.30!

asg→`. Thus, ifg→` thenT→` for v.0, andT→0 for
v,0, for the same reasons as in the case of Ornst
Uhlenbeck noise.

VI. CONCLUSIONS

We have derived exact, analytical expressions for vari
quantities characterizing the absorption process in a m
system with a linear growth term and driven by multiplic
tive colored Gaussian noise. As mentioned in the Introd
tion, this model describes certain chemical and biologi
systems. The absorbing state of the Langevin equation~1.2!
represents extinction in those applications. If the growth r
is negative, extinction is inevitable. If the growth rate is po
06110
e

n-

s
el

-
l

te
-

tive, long-term survival occurs with nonzero probability, b
not with probability 1. In the presence of external nois
survival is never certain. In the critical case of zero grow
the fluctuations drive the system to extinction, with one e
ception. If regions of positive and negative correlations
the noise cancel each other out, then the system has a ch
of avoiding extinction. The absorption, or extinction, proce
was analyzed in more detail for Ornstein-Uhlenbeck noi
the most common model of colored noise. For systems w
negative growth rates, the mean time to extinction depe
only weakly, namely, logarithmically, on the noise varian
as the latter decreases toward zero. Even a large reductio
the noise variance lengthens the average survival time o
moderately. For systems with positive growth rates, the pr
ability of ultimate extinction decreases somewhat faster t
exponentially as the variance of the noise decreases tow
zero. Here, even a small reduction in the variance of
external noise greatly improves the chance of long-term s
vival.

The method we developed in this paper for the study
the exactly solvable model~1.2! can be extended to the clas
of models with an absorbing state that are described by
~1.1!. We assume that the functionsF(x) andg(x) are such
that the Langevin equation

@ ẋ~ t !2F„x~ t !…#g21
„x~ t !…5 f ~ t ! ~6.1!

@x(0)5x1# has a single-valued solutionx(t) whose range of
values contains the pointx5 x̃. ~Without loss of generality
we set x̃50.! Let G(x,t) be the probability density tha
x1(t)5x, wherex1(t) is the solution of Eq.~6.1! for x(0)
51x0. If F(2x)52F(x) and g(2x)5g(x), then
G(2x,t) is the probability density thatx2(t)5x, where
x2(t) is the solution of Eq.~6.1! for x(0)52x0. With the
help of those densities we can construct the probability d
sity P(x,t) of the solution of Eq.~1.1! with an absorbing
state atx50. By analogy with Eq.~2.9! we obtain

P~x,t !5G~x,t !2G~2x,t !1A~ t !d~x!, ~6.2!

where

A~ t !512E
0

`

dx@G~x,t !2G~2x,t !# ~6.3!

is the probability that the system governed by Eq.~1.1! is in
the absorbing statex50 at timet. In other words, the PDF
P(x,t) for the system~1.1! is fully defined by the PDF
G(x,t) for the system described by Eq.~6.1!. This simplifies
the problem considerably, because no boundary condit
are needed to findG(x,t). Note also that, if the stationar
PDF Gst(x)5G(x,`) exists, thenGst(2x)5Gst(x), and
the system described by Eq.~1.1! is in the absorbing state
x50 with probability 1 att5`.
9-8
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APPENDIX

For v.0, we write Eq.~5.19! as

T5Ag

p

1

2v
~K12K0!, ~A1!

where

Ks5E
0

`

dx
e2gx

Ax
ln~s1x!. ~A2!

If s50, then@30#

K052Ap

g
@g1 ln~4g!# ~A3!

(g'0.5772 is the Euler constant!. Using the integral repre
sentation of the degenerate hypergeometric function@31#

C~a,c;x!5
1

G~a!
E

0

`

dy e2xyya21~11y!c2a21 ~A4!

(a.0), we obtain forK1

K152Ap
]

]r
CS 1

2
,
3

2
2r;gD U

r50

. ~A5!

We used the following formula@30# to evaluate the de
rivative in Eq.~A5!:

CS 1

2
,
3

2
2r;gD5

G~1/22r!

G~1/2!
gr21/2

1F1S r;
1

2
1r;gD

1
G~r21/2!

G~r! 1F1S 1

2
;
3

2
2r;gD , ~A6!

where 1F1(a;b;x) is the special case of the generalized h
pergeometric function@31#
s
e,

s.

06110
-

pFq~a1 , . . . ,ap ;b1 , . . . ,bq ;x!5 (
n50

`
~a1!n . . . ~ap!nxn

~b1!n . . . ~bq!nn!
,

~A7!

and (a)n5G(a1n)/G(a). Taking into account that

]

]r1F1S r;
1

2
1r;gD U

r50

5 (
n51

`
G~n!gn

~1/2!nn!

52g(
n50

`
G2~n11!gn

~3/2!nG~n12!n!

52g(
n50

`
~1!n~1!ngn

~3/2!n~2!nn!

52g2F2S 1,1;
3

2
,2;gD , ~A8!

]

]r

G~1/22r!

G~1/2!
U

r50

5g12 ln 2, ~A9!

]

]r

G~r21/2!

G~r!
U

r50

522Ap, ~A10!

limr→0G(r21/2)/G(r)50, ]gr21/2/]rur505 ln g/Ag, and
1F1(0;1/2;g)51, we find

K152p1F1S 1

2
;
3

2
;gD22Apg2F2S 1,1;

3

2
,2;gD

2Ap

g
@g1 ln~4g!#. ~A11!

Substituting Eqs.~A3! and ~A11! into Eq. ~A1!, we obtain
Eq. ~5.20!.
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